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ABSTRACT 

Let  D = F ( G )  be a division ring generated as a division ring by its central 
subfield F and the polycyclic-by-finite subgroup G of its multiplicative group, 
let n be a positive integer and let X be a finitely generated subgroup of 
GL(n,  D) .  It is implicit in recent works of A. I. Lichtman that X is residually 
finite. In fact, much  more  is true. If c h a r D  = p ~ 0 ,  then there is a normal  
subgroup of X of finite index that  is residually a finite p-group.  If char D = 0, 
then  there exists a cofinite set ~r = ~ ( X )  of rational primes such that for each p 
in ~ there is a normal  subgroup of X of finite index that is residually a finite 
p-group.  

Let D = F(G) be a division ring generated as a division ring by its central 

subfield F and the polycyclic-by-finite subgroup G of its multiplicative group D * 

and let n be a positive integer. Implicit in the works [5] and [6] of Lichtman is the 

fact that every finitely generated subgroup of GL(n, D)  is residually finite. Here 

we prove something sharper. 

THEOREM 1. With D and n as above, let X be any finitely generated subgroup 
of GL(n, D) or, more generally, let X be any subgroup of the group of units of a 
finitely generated subring R o[ the n by n matrix ring D ~"~"~. 

(a) If  char D = 0 there exists a cofinite set 1r = 7r(X) of rational primes such 

that for each p E 7r there is a normal subgroup of X of finite index that is residually 

a finite p-group. 
(b) If  char D = p > 0 there is a normal subgroup of X of finite index that is 

residually a finite p-group. 

This theorem directly generalizes a result ([16] 4.7) for linear groups. It is also 
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at least superficially related to the main result of Segal's paper [14]. Theorem 1 is 

an easy consequence of the following. 

THEOREM 2. With D and n as above let R be a finitely generated subring of the 

matrix ring D ~"• Then there exists an ideal a of R of finite index with 

n~ a ~ = {0}. Further, if char D = 0 there exists a cofinite set Tr = 7r(R ) of rational 

primes such that for each p E 7r we can find a as above with p E a. 

Of course, if cha rD  = p  > 0 in Theorem 2, then necessarily plR E a. There 

are a number of easy corollaries of Theorem 1. 

COROLLARY 1. Let D, n and X be as in Theorem 1. 

(a) If n = 1 or char D = 0 then X is torsion-free by finite. 

(b) If char D = p > 0 then X has a normal subgroup of finite index each of 

whose elements of finite order is a p-element. 

PROOF. Part (b) and the second part of (a) follow at once from Theorem 1. 

Since D* contains no non-trivial elements of order char D, the first part of (a) 

follows from (b). 

COROLLARY 2. Let D, n and X be as in Theorem 1. I f  char D = 0 then X is 

centrally eremitic and contains a normal subgroup of finite index with eccentricity 

1. If c ha r D  = p  > 0  then X is centrally p'-eremitic and contains a normal 

subgroup of finite index with eccentricity 1. 

This is an immediate consequence of Theorem 1 and paragraph 2.2 of [15]. See 

[15] or [16] for definitions. 

COROLLARY 3 (Lichtman [6] theorem 2). Let D, n and X be as in Theorem 1. 

If X is also periodic then X is finite. 

PROOF. If char D = 0 then X is finite by Corollary l(a). Let  char D = p > 0. 

Then X has a normal p-subgroup P of finite index by Corollary l(b). But P is 

unipotent and hence nilpotent ([6] theorem 1) and is also a finitely generated 

p-group. Consequently P is finite and therefore X is too. 

Doubtless it is known that in general finitely generated skew linear groups 

need not be residually finite, but we include a couple of examples at the end of 

this paper. 

THE PROOFS. The standard proof of Higman's zero-divisor theorem ([2] 

theorem 12) yields the following, the terminology of which we explain below. 
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(1) Let R = S[ G ] be a ring, S a subring of R and G a subgroup of the units of R 

normalizing S such that S n G is a subgroup of G and R is a crossed product of S 

and G/(S  n G). Suppose that G/(S  n G) is locally indicable and that x is a 

non-zero element of R each of whose non-zero coefficients in S is not a 

zero-divisor of S. Then x is not a zero-divisor of R. 

If T is any transversal of S N G to G the crossed product condition above 

amounts to saying that each r in R has a unique representation r = Y~ tr, where 

the coefficients r, lie in S and almost all are zero. A different choice of T 

multiplies these coefficients by units of S. Thus the hypothesis on x is 

independent of the choice of T. A group X is locally indicable if each of its 

finitely generated subgroups has an infinite cyclic image. Note that a poly-Z 

group is locally indicable. 

(2) Let R be a ring, J a subring of R such that R is finitely generated as right 

J-module and J~ a ring direct summand of J that is a right Noetherian ring. I f  

a E R is not a left zero-divisor of R then aR n J~ ~ {0}. 

The conclusion of (2) is also valid if J~ is commutative (or, more generally, 

locally right Noetherian) instead of right Noetherian. 

PROOF. R is a (not necessarily unital) J,-module via right multiplication and 

R = A �9 B as right J~-module, where J~ kills A and B is unital and finitely 

generated. Then B contains a free J~-submodule M of finite maximal rank m say 

([1] 1.9). Now M ~-j, aM under the obvious map. If aR n J1 = {0} then aM + .11 is 

a free J~-submodule of B of rank m + 1. This contradiction of the choice of m 

shows that aR n J~ # {0}. 

Let G be a group. A plinth for G is a G-module that is free of finite rank as 

Z-module such that A is rationally irreducible for every subgroup of G of finite 

index (or equivalently such that the connected component (Gp) ~ containing 1 is 

irreducible over Q, where p:G---> GL(rankA,  Z) is the representation of G 

determined by a choice of basis of A).  

(3) Let A be a plinth for the polycyclic-by-finite group G. For i = 1, 2 , . . . ,  r let k, 

be a locally finite field and let J = �9 k,A. Suppose we are given an action of G on 

the ring J extending the action on A and let v = Y. v~ ~ J where each v~ E k,A \ {0}. 

Then there exists a maximal ideal m of J with v ~ n m = ~ .  

Hence v G denotes the orbit {~,~ : g ~ G}. Result (3) is a slight generalisation of 

[9] theorem E. 
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PROOF. Each k~A is a domain (e.g. by 1). In particular, G permutes the k~A. 

Let N = n~ N6 (k~A). Then N is a normal subgroup of G of finite index. Choose 

a transversal T of N to G. If t E T then v~E kjA for some j =j( t ,  i) and trivially 

v ' ~  0. Let o) be the product of all the vt~ in klA.  

By [9] theorem E there is a maximal ideal ml of k l A  with 6o N n rrt~ = Q. Let 

m = m~ �9 E~>I k~A. Clearly m is a maximal ideal of J. Let g E G. Then g = th for 

some t ~ T and h E N, and vl @ k l A  for some unique i. Now vf divides ~o h ff m,, 

so v ~ m l  and v~ff_m as required. 

(4) Let R = S [H]  be a ring, where S is a finite semisimple ring, H a subgroup of 

the units of R normalizing S, S N H a subgroup of H and R a crossed product of S 

and H / ( S  n H).  Let G be a polycyclic-by-finite group of automorphisms of R 

normalizing S and H, for which H / ( S  n H)  is a plinth. Let m be a positive integer 

and a any non-zero-divisor of R. Then there exists a G-invariant ideal a ~ R of R 

of finite index such that a is a unit modulo a and a = radR ( a n  rg{H m }). 

If X is a subset of a ring R then radR X denotes the intersection of the prime 

ideals of R containing X ( = R if none such exist) and rg{X} denotes the subring 

of R generated by X (and the identity of R).  

PROOF. Clearly B = H Isl~ centralizes S and H ' N  S n H, which has order 

dividing IS [! Thus B stabilizes the series H D S n H D (1) and B I~" centralizes 

H. Set A = H I where l = m (t S ] !)3. Then A is a free abelian subgroup of H of 

finite index lying in H m that is normalized by G and central in R. Note that A is 

also a plinth for G. 

The subring k of R generated by its identity element has the form k = @;=~ k~ 

where each k~ is a finite field. Set Z = k~A = k~ [A ] C_ R, so J = rg{A } = @ Z ; we 

have used here that S n A = {1}. Trivially J is central in R and normalized by G 

and R is a finitely generated J-module .  By (2) there exists h~ E a R  n J~ \{0}. 

Interchanging right and left there exists also Ix, E R a  AZ\{0}.  Let v = 

E , ~ ,  E J. By (3) there exists a maximal ideal m of J with v ~ N m = Q. Since J is 

a finitely generated commutat ive ring, J /m is finite. Consequently R / m R  is also 

finite. Trivially, m R  = R m. 

Let g E G. Then a ~ ~R + m R  D_ (v~-'J + m)R = JR = R. Thus aR + mgR = R 

and similarly Ra + mgR = R. Consequently a is a unit modulo mgR and 

therefore also modulo radR (rag). The set {ragR : g ~ G} is finite since R / m R  is 

finite and R is finitely generated. Let 

a =  n r a d R ( m S ) = r a d R ( n  rnSR). 
gEG g~G 
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Then R/a is a finite semisimple ring and each radR(mg)/a is a direct sum of 

simple components of R/a. Therefore a is a unit modulo a. 

Now R = (~x~x SAx where X is any transversal of (S n H ) A  to H. Also S is 

a direct sum of irreducible k-modules, so SA is a direct sum of cyclic J-modules,  

each isomorphic to a direct summand of J and one being J itself. If J -= Je (~ J f  

where 1 = e + f  then 

Me (mge)=(~n  m~)e 

and therefore 

Consequently 

n m g R  = (nm')R c ( a n  J)R _C ( a n  rg{H"})R C_ a. 

a = radR ( a n  rg{H" }). 

Finally R = J ~ K  as J-module for some K and so mR C_raE]~KtR. The 

proof is complete. 

For brevity, call a group Gpolyplintic if G has a series (1) = GoC_ G~ C_ . . .  _C 

Gr = G of finite length of normal subgroups such that each factor G~/G,_t is a 

plinth for G. Note that every subgroup of a polyplintic group of finite index is 

polyplintic and that every polycyclic-by-finite group has a polyplintic normal 

subgroup of finite index. 

(5) Let R = S[G] be a ring, where S is a finite semisimple subring of R, G a 
subgroup of the units of R normalizing S, S n G a subgroup of G and R a crossed 
product of S and the polyplintic group G/(S n G). Let P be a normal subgroup of 
G of finite index and let a = Y.,~rta, E R \{0} where Tis a transversal orS n G to 
G and the a, are zero or units orS. Then there exists an ideal a~  R o fR  o[]inite 
index such that a is a unit modulo a and a = radR ( a n  rg{P}). 

PROOF. We induct on the length of a plinth series for G/(S n G). Let 

H/(S n G) be a normal subgroup of G/(S n G) such that H/(S n G) is a 

non-trivial plinth for G and G / H  is polyplintic. If X is a transversal of H to G 

then R =Gx~xxS[H].  Let a =Exbx where each bx E S[H]. By (1) each 

non-zero bx is a non-zero-divisor of S[H]. Consequently so is b =Ilbx,,0bx 

(multiplied in any fixed order). Let m = ( H : H  n P). Then by (4) there is a 

G-invariant ideal b C S[H] of finite index such that b is a unit modulo b and 

b = radstm(b n rg{H O P}). By an elementary property of finite semisimple rings 

each non-zero bx is also a unit modulo b. 
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Now bR = R b = O ~ x x b  since b is G-invar iant .  By induct ion applied to 

R / b R  there exists an ideal a _D b of R of finite index with a / R such that a is a 

unit modulo  a and 

Then  

a/bR = rada/~a (a/bR N rg{P modulo  bR }). 

a = radR ( a n  (rg{P} + BR)) 

= radR ( ( a n  rg{P}) + bR ) 

= radR ((a O rg{P}) + radsiH](b N rg{H N P})) 

= radR ( a n  rg{P}) 

since if c is a G- invar ian t  ideal of S[H] of finite index then (radsm]c) s _C c for 

some integer s and so 

((rads[m,)G)'  C c G  and rads[mcC_rad, r 

(6) Let R = Z I G ]  be a domain, where Z is a central subring of R, G a subgroup 

of the units of R, Z n G a subgroup of G generating Z as a ring and R a crossed 

product of Z and the polyplintic group G / ( Z  n G). For each prime p let Gp be a 

normal subgroup of G of finite index containing Z n G. Let a E R \ {0}. 

(a) If char R = 0 there is a cofinite set rr of rational primes such that for each 

p E 7r there exists an ideal a ~ R of R of finite index such that a is a unit modulo a 

and p E a = radR ( a n  rg{ Gp }). 

(b) If char R = p > 0 there exists an ideal a ~ R of R of finite index such that a 

is a unit modulo a and a = rada (a n rg{G,}). 

PROOF. Let  T be a transversal of Z n G to G and let a = E r  ta, where each 

a, E Z. Let  b = II,,,,0 a,. Now Z is a finitely genera ted  integral domain  and hence  

so is Z[b-'l. If n is a maximal ideal of Z [ b  1] then n has finite index and Z n n is 

a maximal  ideal of Z. If char R = 0, set 

7r = {char(Z[b-'l/n) : n as above}. 

Then  7r is cofinite. 

If char  R = 0 let p E zr. Otherwise  set p = char R. The  above shows that  there 

is a maximal ideal m of Z, necessarily of finite index, with p E m and b ff m. It 

follows that each non-zero  a, is a unit modulo  m. Also R / m R  ~-@,~r t (Z /m)  

and mR is an ideal of R since ra is central. By (5) there is an ideal a r R of R 

containing m R  such that a is a unit modulo  a and 
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a = radn (a N (rglGp} + mR))  

= rada ( ( a n  rg{Gp}) + m) 

= radR ( a n  rg{Gp}) 

since Z = rg{Z n G} c_ rg{Gp}. 

An ideal a of a ring R is right weak A - R  if for any submodule N of a finitely 

generated right R-module  M there exists an integer m with N n Mam c Na. 

There  is a similar notion of left weak A - R  and weak A - R  means left and right 

weak A - R .  

(7) Let G be a polycyclic group, J a commutative Noetherian ring and a an ideal 

of the group ring R = JG of finite index. Suppose that G is p-nilpotent for every 

prime p dividing the characteristic of R/a.  Then a is weak A - R .  

PROOF. Since R is Noetherian,  it suffices to consider a finitely generated (say 

right) R -modu le  M and an essential submodule N of M killed by a and to prove 

that some power of a kills M (see [1] 11.2). 

N is a finitely generated module over the finite ring R/a,  so N is finite. By [4] 

theorem 3 (or alternatively [10]) the split extension G [ M  is residually finite. 

Thus there is a submodule K of M of finite index with K n N = {0}. Since N is 

essential, K --{0} and M is finite. 

Let b = J n a. By the Ar t in -Rees  Lemma  (e.g. [7] 11C) there exists an integer 

l _-> 1 with N n M b  I c_ Nb  = {0}. Since b is central M b  t is an R-submodule  of M 

and N is essential. Therefore  M b  t =  {0}. We now induct on the composition 

length of M as J -module .  

There  exists a maximal ideal m of J containing b with M m  < M. Clearly 

N n M m  is essential in M m  (even if M m  = {0}) so by induction M m a '  = {0} for 

some positive integer r. Then M a ' m  = {0} and so Ma' is a finitely generated 

(J /m)G-module .  Also J n a C_ m, so G is p-ni lpotent  for p = char J/ra. By the 

theorem of [12] every ideal of ( J /m)G is weak A - R  so there exists a positive 

integer s with N n Ma'  n M a  '+s C_ N a  = {0}. Therefore  Ma "+~ = {0}. 

(8) Let R = S[ G ] be a ring where S is a subring of R and G is a subgroup of the 

units of R normalizing S. Suppose P is a normal subgroup of G of finite index with 

P C S and let a be a G-invariant right (resp. left) weak A - R  ideal of S such that 

S /a is right (left) Noetherian. Then b = radR a is a right (left) weak A - R  ideal of 

R. 

PROOF. We prove the right version. Now aR = E~G ag is an ideal of R and 
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b/aR is the radical of R / a R .  Also R is finitely genera ted  as right S -modu le  and 

there fore  R / a R  is right S - N o e t h e r i a n  and consequent ly  right Noe ther ian .  Thus  

some  power  of b, say b r, lies in a R  ([3] p. 196, t heo rem 1 and [l] 1.8). 

Le t  M be a finitely gene ra t ed  right R - m o d u l e  and N a submodu le  of M. Then  

M is also finitely S -gene ra t ed  so for  some  posit ive integer  s we have N n M a  ~ c_ 

Na .  Then  

N f3 M b  '~ C N f3 M(aR)~  = N f3 M a  ~ C _ N a C  N b  

since ( a R f  = ( a G )  ~-- G a  ~ as a is G- invar ian t .  The  result  follows. 

(9) REMARK. It is easy to deduce  f rom (7) and (8) that  if G is a polycyclic-by- 

finite group,  J a commuta t i ve  Noe the r ian  ring and a an ideal of J G  of finite 

index, then there  exists a weak  A - R  ideal b of J G  of finite index with 

J 71 a C b C a. This is a weak  version of [4] t h e o r e m  6. 

If a is an ideal of a ring R let ~R (a) deno te  the set of all e lements  of R that  are 

not zero-divisors  modulo  a. 

(10) Let R be a right Noetherian ring and a an ideal o f  R with R / a  semisimple. 

Then : 

(a) ~R (a) C_ ~R (a') for each i ~ 1. 

(b) ~R (a) is a right Ore set modulo a ~ for each i >= 1. 

(c) I f  a is right weak  A - R  then ~R (a) is a right Ore set in R.  

(d) I f  a is right weak  A - R  and R is also left Noetherian and a domain  then in 

the classical quotient ring R O ~ for O = ~R ( a ) we have that f'] ~-~ ( a O- l ) '  _ {0}. 

PROOF. (a) We induct on i. We may  assume that  a '+~= {0}. Suppose  xq = 0 

where  x E R \{0} and q E ~R (a). By induct ion x E a i. Now a i is an R / a - m o d u l e  

and R / a  is semisimple .  Thus  a ~ is a direct  sum of i r reducible  R / a - m o d u l e s  and 

there  exists an irreducible R / a - s u b m o d u l e  V and an e l emen t  v E V\{0} with 

vq = 0. But V is i somorphic  to a submodu le  of R / a ,  so q is a right zero-divisor  

on R / a .  This contradic t ion shows that  q is not  a right zero-divisor  of R. In the 

same  way q is not a left zero-divisor  either.  

(b) Again ,  we may  assume that  a ~ +' = {0}. By (a) we have qgR (a) _C c~R (0). But  

since a is now the radical of R we have q~R (0)_C c~R (a) and Smal l ' s  t h e o r e m  

yields that  q~R (a) is right Ore  (see [1] 2.3). 

(c) This  follows at once f rom (b) and a l e m m a  of P. F. Smith  ([1] 11.9). 

(d) Now a Q  1 is an ideal of R Q  -~ and there fore  (aQ 1),= a~Q-~ for each 
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i _-> 1. Also, if aq ~ = b ~ R where a E a  ~ and q @ Q, then bq @a' and (a) yields 

that b E a  ~. Consequently R n a~Q -~ = a ~ for all i => 1. Thus 

R n n (aO-')'  : N a ' : { 0 }  
i i 

also by a result of Smith ([8] 11.2.13). Therefore  

N (aO') i-- (Rn n (oo ')')o ':{0} 
i i 

as required. 

(11) PROOF OF THEOREM 2. If R C_ S are rings and b is an ideal of S of finite 

index containing the rational prime p and satisfying n b '  = {0} then a = R n b is 

an ideal of R of finite index containing p and satisfying n a  ~ = {0}. Also a r215 is 

an ideal of the matrix ring R r215 of finite index containing p and satisfying 

n~ (ar215 ~ ={0}. There exists a finitely generated subring R1 of D with 

R C RCf TM. Thus we may assume that n = I. 

Since F [ G ]  is Noetherian, D is the classical quotient ring of F I G ]  and so 

R C J[G,a  J] for some finitely generated subring J of F and some a 

JIG]\{0}. Enlarge J so that J is still finitely generated, but is also generated by 

its group of units. Then J is generated by a finitely generated subgroup U of its 

group of units (actually the whole group of units is finitely generated by [13] 

th6or6me 1) and UG is polycyclic-by-finite. Thus replacing G by UG we may 

assume that J is an image of Z. 

Regard G as a subgroup of GL(m,Z)  for some m (e.g. [16] 2.5, 2.3). Then G 

has a normal subgroup H of finite index with H connected such that H modulo 

its centre ~ ( H )  is polyplintic. Since H is connected ~ ( H )  is the FC-centre  of H 

and H is orbitally sound in Roseblade's terminology (see [11] p. 383). Then by 

Theorem C1 or [11] we have that J[H] is a crossed product of Z = J[~,(H)] and 

HI~,(H). 
Let K denote the quotient field of J in D. Then K ( G )  has finite dimension d 

say as left K(H)-space  and so J[G, a-l] C_ K ( G )  is isomorphic to a subring of 

K ( H )  ~d• Therefore  J[G, a -~] is isomorphic to a subring of J[H, b-~] ~d• for 

some b E J [ H ] \ { 0 }  and we may assume that H = G. 

For each prime p choose a p-nilpotent normal subgroup Gp of G of finite 

index containing ~1(G). By (6) there is a prime p and an ideal a of J[G] = Z[G]  
of finite index with p C a  such that a is a unit modulo a and a =  

rad,iol(a N J[Gp]). By (7) the ideal a n J[Gp] of J[Gp] is weak A-R.  Hence a is 

weak A - R  by (8). Let  Q = cr  ). Then by (10) we have that Q is a right 
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divisor set in J [G] ,  R <= J[G, a ~] C J[G]Q -l = T say, and aO ' is an ideal of T 

of finite index with p E aO -l and N ,  (aQ ~)i = {0}. If char D = 0 then by (6) we 

can choose p to be any prime with at most a finite number of exceptions. In view 

of the opening remarks of this proof we have finished. 

The following result may be proved similarly to (1) on page 22 of [16]. 

(12) I f  a is an ideal of finite index in the finitely generated ring R then each R/a  ~ 

is also finite. 

(13) PROOF OF THEOREM 1. By Theorem 2 for a suitable prime p we can find 

an ideal a of R of finite index with p @a and n ,  a ~ = {0}, and by (12) each R/a'  

is finite. Regard R as an R - X bimodule via left and right multiplication and set 

C~ = Cx(R/a~). Then Ct is a normal subgroup of X of finite index, each C~/C~+I 

is a finite p-group and A,C~ =(1), see [16] 4.6. 

(14) EXAMPLES. We construct examples of 3-generator soluble subgroups of 

the multiplicative groups of division rings that are not residually finite. Our first 

example is nilpotent-of-class-two by cyclic. 

Let p be any prime. For each i ~ Z let 

= (x,, y, : [x,, y,, x,] = [x,, y,,y,] = I, [x,, y,] p = 1). 

Let H be the central product of the H~ amalgamating the [x~, y~], to z say. It is 

easy to check that the centre of H is Z = ( x f ,  yf ,  z : i  E Z). Let g be the 

automorphism of H defined by x~,=x~.~, y~= yi.~ for each i E Z  and let G 

denote the split extension of H by (g). Clearly G is 3-generator and nilpotent- 

of-class-2 by cyclic. Suppose N is a normal subgroup of G of finite index not 

containing z. Now ( z ) =  H' ,  so H n N C_ Z. But H / Z  is infinite, contradicting 

the finiteness of G/N.  Consequently, G is not residually finite. 

Let F be any field with a primitive p-th root ff of unity and identify ff and z. 

Let F[H] be the corresponding crossed product of F and H / ( z )  with F central. 

F[H] is locally Noetherian as H is nilpotent, and a domain by (1). By Goldie's 

theorem ([1] 1.27) F[H] is an Ore domain; let E denote its classical quotient 

ring. The automorphism g of H determines an automorphism q5 say of E. Let 

D = E(( t ;  ~b)) be the division ring of formal power series over E in t satisfying 

et = te ~ for all e in E, see example 1, page 187 of [3]. Then G is isomorphic to 

the subgroup (t, H)  of D*. 

Our second example has derived length 3 like the previous example but is also 

torsion-free. The group we consider is a well-known example of P. Hail. 
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Let A be the direct product of copies A~ of the rationals, written multiplica- 

tively. Let i ~ pi be a bijection from Z to the set of all primes. Let x be the 

automorphism of A that permutes the A~ cyclically and let y be the automorph- 

ism of A that for each i raises the elements of Ai to their p~-th powers. Then 

B = (y(X)) is abelian and H = (x, y) is metabelian. The split extension G = H[A 
is torsion-free and soluble of derived length 3. Also A is irreducible as 

H-module,  so G is not residually finite. 

Let F be any field. The group ring FA is a domain (e.g. by (1)); let K be its 

quotient field. The action of H on A extends via linearity to an action of H on 

K. The corresponding skew group ring KB is a domain by (1), and locally 

Noetherian since B is abelian. Thus KB is an Ore domain; let E be its classical 

quotient ring. The automorphisms given by x on K and B extend to one th of E. 

As in the previous example if D is the division ring E(( t ;  4))) the subgroup 

(t, AB)  of D* is isomorphic to G. 
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