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ABSTRACT

Let D = F(G) be a division ring generated as a division ring by its central
subfield F and the polycyclic-by-finite subgroup G of its multiplicative group,
let n be a positive integer and let X be a finitely generated subgroup of
GL(n, D). It is implicit in recent works of A. I. Lichtman that X is residually
finite. In fact, much more is true. If char D = p#0, then there is a normal
subgroup of X of finite index that is residually a finite p-group. If char D =0,
then there exists a cofinite set 7 = #(X) of rational primes such that for each p
in 7r there is a normal subgroup of X of finite index that is residually a finite
p-group.

Let D = F(G) be a division ring generated as a division ring by its central
subfield F and the polycyclic-by-finite subgroup G of its multiplicative group D *
and let n be a positive integer. Implicit in the works [5] and [6] of Lichtman is the
fact that every finitely generated subgroup of GL(n, D) is residually finite. Here
we prove something sharper.

THEOREM 1. With D and n as above, let X be any finitely generated subgroup
of GL(n, D) or, more generally, let X be any subgroup of the group of units of a
finitely generated subring R of the n by n matrix ring D™,

(a) If char D =0 there exists a cofinite set 7 = w(X) of rational primes such
that for each p € m there is a normal subgroup of X of finite index that is residually
a finite p-group.

(b) If char D = p >0 there is a normal subgroup of X of finite index that is
residually a finite p-group.

This theorem directly generalizes a result ([16] 4.7) for linear groups. It is also
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at least superficially related to the main result of Segal’s paper [14]. Theorem 1 is
an easy consequence of the following.

THEOREM 2. With D and n as above let R be a finitely generated subring of the
matrix ring D", Then there exists an ideal a of R of finite index with
M, o' = {0}. Further, if char D = 0 there exists a cofinite set w = w(R) of rational
primes such that for each p € w we can find a as above with p € a.

Of course, if char D = p >0 in Theorem 2, then necessarily plg € a. There
are a number of easy corollaries of Theorem 1.

CorOLLARY 1. Let D, n and X be as in Theorem 1.

(@) If n =1 or char D =0 then X is torsion-free by finite.

(b) If char D = p >0 then X has a normal subgroup of finite index each of
whose elements of finite order is a p-element.

Proor. Part (b) and the second part of (a) follow at once from Theorem 1.
Since D* contains no non-trivial elements of order char D, the first part of (a)
follows from (b).

COROLLARY 2. Let D, n and X be as in Theorem 1. If char D =0 then X is
centrally eremitic and contains a normal subgroup of finite index with eccentricity
1. If charD =p >0 then X is centrally p'-eremitic and contains a normal
subgroup of finite index with eccentricity 1.

This is an immediate consequence of Theorem 1 and paragraph 2.2 of [15]. See
[15] or [16] for definitions.

CoroLLARY 3 (Lichtman [6] theorem 2). Let D, n and X be as in Theorem 1.
If X is also periodic then X is finite.

Proor. If char D =0 then X is finite by Corollary 1(a). Let char D =p > 0.
Then X has a normal p-subgroup P of finite index by Corollary 1(b). But P is
unipotent and hence nilpotent ([6] theorem 1) and is also a finitely generated
p-group. Consequently P is finite and therefore X is too.

Doubtless it is known that in general finitely generated skew linear groups
need not be residually finite, but we include a couple of examples at the end of
this paper.

THE Proors. The standard proof of Higman’s zero-divisor theorem ([2]
theorem 12) yields the following, the terminology of which we explain below.
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(1) Let R = S[G] be aring, S a subring of R and G a subgroup of the units of R
normalizing S such that S N G is a subgroup of G and R is a crossed product of S
and G/(S N G). Suppose that G/(S N G) is locally indicable and that x is a
non-zero element of R each of whose non-zero coefficients in S is not a
zero-divisor of S. Then x is not a zero-divisor of R.

If T is any transversal of $ N G to G the crossed product condition above
amounts to saying that each r in R has a unique representation r = X tr, where
the coefficients r, lie in § and almost all are zero. A different choice of T
multiplies these coefficients by units of S. Thus the hypothesis on x is
independent of the choice of T. A group X is locally indicable if each of its
finitely generated subgroups has an infinite cyclic image. Note that a poly-Z
group is locally indicable.

(2) Let R be a ring, J a subring of R such that R is finitely generated as right
J-module and J, a ring direct summand of J that is a right Noetherian ring. If
a €ER is not a left zero-divisor of R then aR N J, #{0}.

The conclusion of (2) is also valid if J; is commutative (or, more generally,
locally right Noetherian) instead of right Noetherian.

ProOF. R is a (not necessarily unital) J,-module via right multiplication and
R = A OB as right J;-module, where J; kills A and B is unital and finitely
generated. Then B contains a free Ji-submodule M of finite maximal rank m say
([1] 1.9). Now M =, aM under the obvious map. If aR N J, = {0} then aM + J is
a free Ji-submodule of B of rank m + 1. This contradiction of the choice of m
shows that aR N J, #{0}.

Let G be a group. A plinth for G is a G-module that is free of finite rank as
Z-module such that A is rationally irreducible for every subgroup of G of finite
index (or equivalently such that the connected component (Gp)° containing 1 is
irreducible over Q, where p : G — GL(rank A,Z) is the representation of G
determined by a choice of basis of A).

(3) Let A be a plinth for the polycyclic-by-finite group G. Fori =1,2,---,rletk,
be a locally finite field and let J = @ k.A. Suppose we are given an action of G on
the ring J extending the action on A and let v = 2 v; € ] where each v; € kA \{0}.
Then there exists a maximal ideal m of J with v’ Nm=(.

Hence v denotes the orbit {v* : g € G}. Result (3) is a slight generalisation of
[9] theorem E.
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Proor. Each k;A is a domain (e.g. by 1). In particular, G permutes the k.A.
Let N =(),Ng(kiA). Then N is a normal subgroup of G of finite index. Choose
a transversal T of N to G. If t € T then v; € k;A for some j = j(¢,i) and trivially
vi#0. Let w be the product of all the v; in k,A.

By [9] theorem E there is a maximal ideal m, of k,A with ™ Nm, =@. Let
m=m, P 2> k:A. Clearly m is a maximal ideal of J. Let g € G. Then g = th for
some t € T and h € N, and v{ € k, A for some unique i. Now v{ divides " & m,,
so viZ m; and v*Z m as required.

(4) Let R = S[H] be a ring, where S is a finite semisimple ring, H a subgroup of
the units of R normalizing S, S N H a subgroup of H and R a crossed product of S
and H/(S N H). Let G be a polycyclic-by-finite group of automorphisms of R
normalizing S and H, for which H/(S N H) is a plinth. Let m be a positive integer
and a any non-zero-divisor of R. Then there exists a G-invariant ideal a # R of R
of finite index such that a is a unit modulo a and a =radg (aNrg{H™}).

If X is a subset of a ring R then radz X denotes the intersection of the prime
ideals of R containing X (= R if none such exist) and rg{ X} denotes the subring
of R generated by X (and the identity of R).

Proor. Clearly B = H®" centralizes S and H'=S N H, which has order
dividing [S|! Thus B stabilizes the series H D S N H D (1) and B"" centralizes
H.Set A = H' where | = m(|S|!)’. Then A is a free abelian subgroup of H of
finite index lying in H™ that is normalized by G and central in R. Note that A is
also a plinth for G.

The subring k of R generated by its identity element has the form k = @i, k
where each k; is a finite field. Set J; = kA = k,[A]C R,soJ =rg{lA} =P J ; we
have used here that S$ N A = {1}. Trivially J is central in R and normalized by G
and R is a finitely generated J-module. By (2) there exists A, € aR N J;\{0}.
Interchanging right and left there exists also w; € Ra NJ\{0}. Let v =
2 hiwi € J. By (3) there exists a maximal ideal m of J with »© N'm = . Since J is
a finitely generated commutative ring, J/m is finite. Consequently R/mR is also
finite. Trivially, mR = Rm.

Letg € G.Thena® 'R+mR D (»*'J+m)R =JR = R. Thus aR + m*R =R
and similarly Ra + m®*R = R. Consequently a is a unit modulo m*R and
therefore also modulo radg (m#). The set {m*R : g € G} is finite since R/mR is
finite and R is finitely generated. Let

a= () radg (m“)=radR( N m3R>.

gEG gEG
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Then R/a is a finite semisimple ring and each radz (m*)/a is a direct sum of
simple components of R/a. Therefore a is a unit modulo a.

Now R = P.ex SAx where X is any transversal of (S N H)A to H. Also S is
a direct sum of irreducible k-modules, so SA is a direct sum of cyclic J-modules,
each isomorphic to a direct summand of J and one being J itself. If J = Je § Jf
where 1=e¢ +f then

N (mge)=< M mg)e

geG gEG

and therefore
Nm*R =(MNm*)RC(@NJ)RC(aNrg{H"HR Ca.
Consequently
a=radg (a Nrg{H™}).

Finally R =J @ K as J-module for some K and so mR Cm@ K# R. The
proof is complete.

For brevity, call a group G polyplintic if G has a series (1)=GoC G C -+ C
G, = G of finite length of normal subgroups such that each factor G;/Gi- is a
plinth for G. Note that every subgroup of a polyplintic group of finite index is
polyplintic and that every polycyclic-by-finite group has a polyplintic normal
subgroup of finite index.

(5) Let R = S[G] be a ring, where S is a finite semisimple subring of R, G a
subgroup of the units of R normalizing S, S N G a subgroup of G and R a crossed
product of S and the polyplintic group G/(§ N G). Let P be a normal subgroup of
G of finite index and let a = Z,crta, € R\{0} where T is a transversal of S N G to
G and the a, are zero or units of S. Then there exists an ideal a # R of R of finite
index such that a is a unit modulo a and a =radr(a Nrg{P}).

Proor. We induct on the length of a plinth series for G/(S N G). Let
H/(S N G) be a normal subgroup of G/(S N G) such that H/(SNG) is a
non-trivial plinth for G and G/H is polyplintic. If X is a transversal of H to G
then R =@.exxS[H]. Let a =2 xb, where each b, € S[H]. By (1) each
non-zero b, is a non-zero-divisor of S[H]. Consequently so is b =1Il, «ob:
(multiplied in any fixed order). Let m =(H : H N P). Then by (4) there is a
G-invariant ideal bC S[H] of finite index such that b is a unit modulo b and
b = rads. (b N rg{ H N P}). By an elementary property of finite semisimple rings
each non-zero b, is also a unit modulo b.
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Now BR = Rb=P,cxxb since b is G-invariant. By induction applied to
R/BR there exists an ideal a D b of R of finite index with a # R such that a is a
unit modulo a and

a/BR = radgsx (a/BR N rg{ P modulo bR}).
Then
a =radg (a N (rg{P} + bR))
=radg ((aNrg{P})+bR)
= radk ((a N rg{ P}) + radsyy (b N rg{H N P}))
=radg (a Nrg{P})

since if ¢ is a G-invariant ideal of S[H] of finite index then (rads;uy)’ C ¢ for
some integer s and so

((rads[H]:)G)’ Cc¢G and I'ads[n]‘ Cradg ¢.

(6) Let R = Z[G] be a domain, where Z is a central subring of R, G a subgroup
of the units of R, Z N G a subgroup of G generating Z as a ring and R a crossed
product of Z and the polyplintic group G/(Z N G). For each prime p let G, be a
normal subgroup of G of finite index containing Z N G. Let a € R\{0}.

(a) If char R =0 there is a cofinite set m of rational primes such that for each
p € m there exists an ideal a # R of R of finite index such that a is a unit modulo a
and p €a =radg (a N1rg{G,}).

(b) If char R = p >0 there exists an ideal a # R of R of finite index such that a
is a unit modulo a and a =radg(aNrg{G,}).

PrROOF. Let T be a transversal of Z N G to G and let a = X7ta, where each
a, € Z. Let b =1L, .0 a.. Now Z is a finitely generated integral domain and hence
sois Z[b7']. If nis a maximal ideal of Z[b '] then n has finite index and Z N nis
a maximal ideal of Z. If char R =0, set

m = {char(Z[b~']/n): n as above}.

Then  is cofinite.

If char R =0 let p € 7. Otherwise set p = char R. The above shows that there
is a maximal ideal m of Z, necessarily of finite index, with p €m and b& m. It
follows that each non-zero q, is a unit modulo m. Also R/mR =@,crt(Z/m)
and mR is an ideal of R since m is central. By (5) there is an ideal a # R of R
containing mR such that ¢ is a unit modulo a and
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a=radg (a N (rg{G,} + mR))
=radgr ((a N rg{G,}) + m)
=radz (aNrg{G,})

since Z =rg{Z N G} Crg{G,}.

An ideal a of aring R is right weak A-R if for any submodule N of a finitely
generated right R-module M there exists an integer m with NN Ma™ C Na.
There is a similar notion of left weak A-R and weak A-R means left and right
weak A-R.

(7) Let G be a polycyclic group, J a commutative Noetherian ring and a an ideal
of the group ring R = JG of finite index. Suppose that G is p-nilpotent for every
prime p dividing the characteristic of R/a. Then a is weak A-R.

Proor. Since R is Noetherian, it suffices to consider a finitely generated (say
right) R-module M and an essential submodule N of M killed by a and to prove
that some power of a kills M (see [1] 11.2).

N is a finitely generated module over the finite ring R/a, so N is finite. By [4]
theorem 3 (or alternatively [10]) the split extension G[M is residually finite.
Thus there is a submodule K of M of finite index with K N N = {0}. Since N is
essential, K ={0} and M is finite.

Let b=J Na. By the Artin-Rees Lemma (e.g. [7] 11C) there exists an integer
[ =1 with NN Mb' C Nb={0}. Since b is central Mb' is an R -submodule of M
and N is essential. Therefore Mb' ={0}. We now induct on the composition
length of M as J-module.

There exists a maximal ideal m of J containing b with Mm <M. Clearly
N N Mm is essential in Mm (even if Mm = {0}) so by induction Mma" = {0} for
some positive integer r. Then Ma'm = {0} and so Ma’ is a finitely generated
(J/m)G-module. Also JNaCm, so G is p-nilpotent for p = char J/m. By the
theorem of [12] every ideal of (J/m)G is weak A-R so there exists a positive
integer s with NN Ma N Ma"" C Na = {0}. Therefore Ma'™ = {0}.

(8) Let R = S[G] be a ring where S is a subring of R and G is a subgroup of the
units of R normalizing S. Suppose P is a normal subgroup of G of finite index with
P C S and let a be a G-invariant right (resp. left) weak A-R ideal of S such that
S/a is right (left) Noetherian. Then b = radx a is a right (left) weak A-R ideal of
R.

PrOOF. We prove the right version. Now aR =Z,.; ag is an ideal of R and
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b/aR is the radical of R/aR. Also R is finitely generated as right S-module and
therefore R/aR is right S-Noetherian and consequently right Noetherian. Thus
some power of b, say b, lies in aR ([3] p. 196, theorem 1 and [1] 1.8).

Let M be a finitely generated right R-module and N a submodule of M. Then
M is also finitely S-generated so for some positive integer s we have N N Ma® C
Na. Then

NNMB*CNNM@R)Y=NNMa CNaCNbDb
since (aR)" = (aG) = Ga® as a is G-invariant. The result follows.

(9) ReMARK. It is easy to deduce from (7) and (8) that if G is a polycyclic-by-
finite group, J a commutative Noetherian ring and a an ideal of JG of finite
index, then there exists a weak A-R ideal b of JG of finite index with
JNaCbCa. This is a weak version of [4] theorem 6.

If ais an ideal of a ring R let 4« (a) denote the set of all elements of R that are
not zero-divisors modulo a.

(10) Let R be a right Noetherian ring and a an ideal of R with R /a semisimple.
Then:

(@) €r(a)C €x(a’) for each i=1.

(b) €k (a) is a right Ore set modulo a' for each i = 1.

(¢) If a is right weak A-R then %r(a) is a right Ore set in R.

(d) If a is right weak A-R and R is also left Noetherian and a domain then in
the classical quotient ring RO ™" for O = €= (a) we have that (-, (aQ ") ={0}.

PrROOF. (a) We induct on i. We may assume that a'"' = {0}. Suppose xq =0
where x € R \{0} and q € %« (a). By induction x € a’. Now a' is an R/a-module
and R/a is semisimple. Thus a' is a direct sum of irreducible R /a-modules and
there exists an irreducible R/a-submodule V and an element v &€ V\{0} with
vq = 0. But V is isomorphic to a submodule of R/a, 50 q is a right zero-divisor
on R/a. This contradiction shows that g is not a right zero-divisor of R. In the
same way q is not a left zero-divisor either.

(b) Again, we may assume that a'”' = {0}. By (a) we have %z (a) C & (0). But
since a is now the radical of R we have €x(0)C %r(a) and Small’s theorem
yields that € (a) is right Ore (see [1] 2.3).

(c) This follows at once from (b) and a lemma of P. F. Smith ([1] 11.9).

(d) Now aQ "' is an ideal of RQ ™ and therefore (aQ ') =a'Q "' for each
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i =1. Also,if ag”' =b € R where a €a’ and q € O, then bq € a’ and (a) yields
that b € a’. Consequently R Na'Q ' =4a' for all i = 1. Thus

RN N (@Q7) =N o ={0}

also by a result of Smith ([8] 11.2.13). Therefore

N @y =(Rn N @)oo =0
as required.

(11) ProOF OF THEOREM 2. If R C S are rings and b is an ideal of S of finite
index containing the rational prime p and satisfying (16 = {0} thena =R Nbis
an ideal of R of finite index containing p and satisfying (a' = {0}. Also a™*" is
an ideal of the matrix ring R™™™ of finite index containing p and satisfying
M. (@) ={0}. There exists a finitely generated subring R, of D with
R C R{"™. Thus we may assume that n = 1.

Since F[G] is Noetherian, D is the classical quotient ring of F[G] and so
R CJ[G,a™"] for some finitely generated subring J of F and some a €
J[G]\{0}. Enlarge J so that J is still finitely generated, but is also generated by
its group of units. Then J is generated by a finitely generated subgroup U of its
group of units (actually the whole group of units is finitely generated by [13]
théoreme 1) and UG is polycyclic-by-finite. Thus replacing G by UG we may
assume that J is an image of Z.

Regard G as a subgroup of GL(m, Z) for some m (e.g. [16] 2.5, 2.3). Then G
has a normal subgroup H of finite index with H connected such that H modulo
its centre {,(H) is polyplintic. Since H is connected {,(H) is the FC-centre of H
and H is orbitally sound in Roseblade’s terminology (see [11] p. 383). Then by
Theorem C1 or [11] we have that J[H] is a crossed product of Z = J[{\(H)] and
H/{(H).

Let K denote the quotient field of J in D. Then K(G) has finite dimension d
say as left K(H)-space and so J[G,a '] C K(G) is isomorphic to a subring of
K(H)**®. Therefore J[G, a '] is isomorphic to a subring of J[H, b™']“** for
some b € J{H]\{0} and we may assume that H = G.

For each prime p choose a p-nilpotent normal subgroup G, of G of finite
index containing {:(G). By (6) there is a prime p and an ideal a of J[G] = Z[G]
of finite index with p €a such that a is a unit modulo a and a=
rady)(a N J[G,]). By (7) the ideal a N J[G,] of J[G,] is weak A-R. Hence a is
weak A-R by (8). Let Q = €si(a). Then by (10) we have that Q is a right
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divisor set in J[G], R =J[G,a '|CJ[G]Q ' = T say, and aQ 'is anideal of T
of finite index with p € aQ ™" and (), (aQ ') = {0}. If char D =0 then by (6) we
can choose p to be any prime with at most a finite number of exceptions. In view
of the opening remarks of this proof we have finished.

The following result may be proved similarly to (1) on page 22 of [16].

(12) If a is an ideal of finite index in the finitely generated ring R then each R /a’
is also finite.

(13) ProoF OF THEOREM 1. By Theorem 2 for a suitable prime p we can find
an ideal a of R of finite index with p € a and N, a' = {0}, and by (12) each R/a’
is finite. Regard R as an R — X bimodule via left and right multiplication and set
C, = Cx(R/a"). Then C; is a normal subgroup of X of finite index, each C\/C.,
is a finite p-group and M, C = (1), see [16] 4.6.

(14) ExampLES. We construct examples of 3-generator soluble subgroups of
the multiplicative groups of division rings that are not residually finite. Our first
example is nilpotent-of-class-two by cyclic.

Let p be any prime. For each i €Z let
Ho=(x,y: :[x, y, x ] =[x, y, yi] = L, [x, ] = 1.

Let H be the central product of the H; amalgamating the [x;, y:], to z say. It is
easy to check that the centre of H is Z =(x?,y?,z:i EZ). Let g be the
automorphism of H defined by x{=xi.1, y¥=y:s; for each i EZ and let G
denote the split extension of H by (g). Clearly G is 3-generator and nilpotent-
of-class-2 by cyclic. Suppose N is a normal subgroup of G of finite index not
containing z. Now (z)=H', so HN N C Z. But H/Z is infinite, contradicting
the finiteness of G/N. Consequently, G is not residually finite.

Let F be any field with a primitive p-th root ¢ of unity and identify ¢ and z.
Let F[H] be the corresponding crossed product of F and H/(z) with F central.
F[H] is locally Noetherian as H is nilpotent, and a domain by (1). By Goldie’s
theorem ([1] 1.27) F[H] is an Ore domain; let E denote its classical quotient
ring. The automorphism g of H determines an automorphism ¢ say of E. Let
D = E((t; ¢)) be the division ring of formal power series over E in ¢t satisfying
et = te® for all e in E, see example 1, page 187 of [3]. Then G is isomorphic to
the subgroup (t, H) of D*.

Our second example has derived length 3 like the previous example but is also
torsion-free. The group we consider is a well-known example of P. Hall.
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Let A be the direct product of copies A; of the rationals, written multiplica-
tively. Let i » p; be a bijection from Z to the set of all primes. Let x be the
automorphism of A that permutes the A; cyclically and let y be the automorph-
ism of A that for each i raises the elements of A; to their p;-th powers. Then
B =(y") is abelian and H =(x, y) is metabelian. The split extension G = H[A
is torsion-free and soluble of derived length 3. Also A is irreducible as
H-module, so G is not residually finite.

Let F be any field. The group ring FA is a domain (e.g. by (1)); let K be its
quotient field. The action of H on A extends via linearity to an action of H on
K. The corresponding skew group ring KB is a domain by (1), and locally
Noetherian since B is abelian. Thus KB is an Ore domain; let E be its classical
quotient ring. The automorphisms given by x on K and B extend to one ¢ of E.
As in the previous example if D is the division ring E({t; ¢)) the subgroup
(t, AB) of D* is isomorphic to G.
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