

ON DIVISION RINGS GENERATED BY POLYCYCLIC GROUPS

BY

B. A. F. WEHRFRITZ

ABSTRACT

Let $D = F(G)$ be a division ring generated as a division ring by its central subfield F and the polycyclic-by-finite subgroup G of its multiplicative group, let n be a positive integer and let X be a finitely generated subgroup of $\mathrm{GL}(n, D)$. It is implicit in recent works of A. I. Lichtman that X is residually finite. In fact, much more is true. If $\mathrm{char} D = p \neq 0$, then there is a normal subgroup of X of finite index that is residually a finite p -group. If $\mathrm{char} D = 0$, then there exists a cofinite set $\pi = \pi(X)$ of rational primes such that for each p in π there is a normal subgroup of X of finite index that is residually a finite p -group.

Let $D = F(G)$ be a division ring generated as a division ring by its central subfield F and the polycyclic-by-finite subgroup G of its multiplicative group D^* and let n be a positive integer. Implicit in the works [5] and [6] of Lichtman is the fact that every finitely generated subgroup of $\mathrm{GL}(n, D)$ is residually finite. Here we prove something sharper.

THEOREM 1. *With D and n as above, let X be any finitely generated subgroup of $\mathrm{GL}(n, D)$ or, more generally, let X be any subgroup of the group of units of a finitely generated subring R of the n by n matrix ring $D^{(n \times n)}$.*

- (a) *If $\mathrm{char} D = 0$ there exists a cofinite set $\pi = \pi(X)$ of rational primes such that for each $p \in \pi$ there is a normal subgroup of X of finite index that is residually a finite p -group.*
- (b) *If $\mathrm{char} D = p > 0$ there is a normal subgroup of X of finite index that is residually a finite p -group.*

This theorem directly generalizes a result ([16] 4.7) for linear groups. It is also

Received May 31, 1983

at least superficially related to the main result of Segal's paper [14]. Theorem 1 is an easy consequence of the following.

THEOREM 2. *With D and n as above let R be a finitely generated subring of the matrix ring $D^{(n \times n)}$. Then there exists an ideal \mathfrak{a} of R of finite index with $\bigcap_i \mathfrak{a}^i = \{0\}$. Further, if $\text{char } D = 0$ there exists a cofinite set $\pi = \pi(R)$ of rational primes such that for each $p \in \pi$ we can find \mathfrak{a} as above with $p \in \mathfrak{a}$.*

Of course, if $\text{char } D = p > 0$ in Theorem 2, then necessarily $p1_R \in \mathfrak{a}$. There are a number of easy corollaries of Theorem 1.

COROLLARY 1. *Let D , n and X be as in Theorem 1.*

- (a) *If $n = 1$ or $\text{char } D = 0$ then X is torsion-free by finite.*
- (b) *If $\text{char } D = p > 0$ then X has a normal subgroup of finite index each of whose elements of finite order is a p -element.*

PROOF. Part (b) and the second part of (a) follow at once from Theorem 1. Since D^* contains no non-trivial elements of order $\text{char } D$, the first part of (a) follows from (b).

COROLLARY 2. *Let D , n and X be as in Theorem 1. If $\text{char } D = 0$ then X is centrally eremitic and contains a normal subgroup of finite index with eccentricity 1. If $\text{char } D = p > 0$ then X is centrally p' -eremitic and contains a normal subgroup of finite index with eccentricity 1.*

This is an immediate consequence of Theorem 1 and paragraph 2.2 of [15]. See [15] or [16] for definitions.

COROLLARY 3 (Lichtman [6] theorem 2). *Let D , n and X be as in Theorem 1. If X is also periodic then X is finite.*

PROOF. If $\text{char } D = 0$ then X is finite by Corollary 1(a). Let $\text{char } D = p > 0$. Then X has a normal p -subgroup P of finite index by Corollary 1(b). But P is unipotent and hence nilpotent ([6] theorem 1) and is also a finitely generated p -group. Consequently P is finite and therefore X is too.

Doubtless it is known that in general finitely generated skew linear groups need not be residually finite, but we include a couple of examples at the end of this paper.

THE PROOFS. The standard proof of Higman's zero-divisor theorem ([2] theorem 12) yields the following, the terminology of which we explain below.

(1) Let $R = S[G]$ be a ring, S a subring of R and G a subgroup of the units of R normalizing S such that $S \cap G$ is a subgroup of G and R is a crossed product of S and $G/(S \cap G)$. Suppose that $G/(S \cap G)$ is locally indicable and that x is a non-zero element of R each of whose non-zero coefficients in S is not a zero-divisor of S . Then x is not a zero-divisor of R .

If T is any transversal of $S \cap G$ to G the crossed product condition above amounts to saying that each r in R has a unique representation $r = \sum tr_i$ where the coefficients r_i lie in S and almost all are zero. A different choice of T multiplies these coefficients by units of S . Thus the hypothesis on x is independent of the choice of T . A group X is locally indicable if each of its finitely generated subgroups has an infinite cyclic image. Note that a poly- \mathbb{Z} group is locally indicable.

(2) Let R be a ring, J a subring of R such that R is finitely generated as right J -module and J_1 a ring direct summand of J that is a right Noetherian ring. If $a \in R$ is not a left zero-divisor of R then $aR \cap J_1 \neq \{0\}$.

The conclusion of (2) is also valid if J_1 is commutative (or, more generally, locally right Noetherian) instead of right Noetherian.

PROOF. R is a (not necessarily unital) J_1 -module via right multiplication and $R = A \oplus B$ as right J_1 -module, where J_1 kills A and B is unital and finitely generated. Then B contains a free J_1 -submodule M of finite maximal rank m say ([1] 1.9). Now $M \cong_{J_1} aM$ under the obvious map. If $aR \cap J_1 = \{0\}$ then $aM + J_1$ is a free J_1 -submodule of B of rank $m + 1$. This contradiction of the choice of m shows that $aR \cap J_1 \neq \{0\}$.

Let G be a group. A *plinth* for G is a G -module that is free of finite rank as \mathbb{Z} -module such that A is rationally irreducible for every subgroup of G of finite index (or equivalently such that the connected component $(G\rho)^0$ containing 1 is irreducible over \mathbb{Q} , where $\rho : G \rightarrow \text{GL}(\text{rank } A, \mathbb{Z})$ is the representation of G determined by a choice of basis of A).

(3) Let A be a plinth for the polycyclic-by-finite group G . For $i = 1, 2, \dots, r$ let k_i be a locally finite field and let $J = \bigoplus k_i A$. Suppose we are given an action of G on the ring J extending the action on A and let $\nu = \sum \nu_i \in J$ where each $\nu_i \in k_i A \setminus \{0\}$. Then there exists a maximal ideal \mathfrak{m} of J with $\nu^G \cap \mathfrak{m} = \emptyset$.

Hence ν^G denotes the orbit $\{\nu^g : g \in G\}$. Result (3) is a slight generalisation of [9] theorem E.

PROOF. Each $k_i A$ is a domain (e.g. by 1). In particular, G permutes the $k_i A$. Let $N = \bigcap_i N_G(k_i A)$. Then N is a normal subgroup of G of finite index. Choose a transversal T of N to G . If $t \in T$ then $\nu_i^t \in k_i A$ for some $j = j(t, i)$ and trivially $\nu_i^t \neq 0$. Let ω be the product of all the ν_i^t in $k_i A$.

By [9] theorem E there is a maximal ideal \mathfrak{m}_1 of $k_1 A$ with $\omega^N \cap \mathfrak{m}_1 = \emptyset$. Let $\mathfrak{m} = \mathfrak{m}_1 \oplus \sum_{i>1} k_i A$. Clearly \mathfrak{m} is a maximal ideal of J . Let $g \in G$. Then $g = th$ for some $t \in T$ and $h \in N$, and $\nu_i^t \in k_i A$ for some unique i . Now ν_i^s divides $\omega^h \notin \mathfrak{m}_1$, so $\nu_i^s \notin \mathfrak{m}_1$ and $\nu^s \notin \mathfrak{m}$ as required.

(4) Let $R = S[H]$ be a ring, where S is a finite semisimple ring, H a subgroup of the units of R normalizing S , $S \cap H$ a subgroup of H and R a crossed product of S and $H/(S \cap H)$. Let G be a polycyclic-by-finite group of automorphisms of R normalizing S and H , for which $H/(S \cap H)$ is a plinth. Let m be a positive integer and a any non-zero-divisor of R . Then there exists a G -invariant ideal $\mathfrak{a} \neq R$ of R of finite index such that a is a unit modulo \mathfrak{a} and $\mathfrak{a} = \text{rad}_R(\mathfrak{a} \cap \text{rg}\{H^m\})$.

If X is a subset of a ring R then $\text{rad}_R X$ denotes the intersection of the prime ideals of R containing X ($= R$ if none such exist) and $\text{rg}\{X\}$ denotes the subring of R generated by X (and the identity of R).

PROOF. Clearly $B = H^{|S|!}$ centralizes S and $H' \leq S \cap H$, which has order dividing $|S|!$. Thus B stabilizes the series $H \supseteq S \cap H \supseteq \langle 1 \rangle$ and $B^{|S|!}$ centralizes H . Set $A = H^l$ where $l = m(|S|!)^3$. Then A is a free abelian subgroup of H of finite index lying in H^m that is normalized by G and central in R . Note that A is also a plinth for G .

The subring k of R generated by its identity element has the form $k = \bigoplus_{i=1}^r k_i$ where each k_i is a finite field. Set $J_i = k_i A = k_i [A] \subseteq R$, so $J = \text{rg}\{A\} = \bigoplus J_i$; we have used here that $S \cap A = \{1\}$. Trivially J is central in R and normalized by G and R is a finitely generated J -module. By (2) there exists $\lambda_i \in aR \cap J_i \setminus \{0\}$. Interchanging right and left there exists also $\mu_i \in Ra \cap J_i \setminus \{0\}$. Let $\nu = \sum \lambda_i \mu_i \in J$. By (3) there exists a maximal ideal \mathfrak{m} of J with $\nu^G \cap \mathfrak{m} = \emptyset$. Since J is a finitely generated commutative ring, J/\mathfrak{m} is finite. Consequently $R/\mathfrak{m}R$ is also finite. Trivially, $\mathfrak{m}R = R\mathfrak{m}$.

Let $g \in G$. Then $a^{g^{-1}} R + \mathfrak{m}R \supseteq (\nu^{g^{-1}} J + \mathfrak{m})R = JR = R$. Thus $aR + \mathfrak{m}^s R = R$ and similarly $Ra + \mathfrak{m}^s R = R$. Consequently a is a unit modulo $\mathfrak{m}^s R$ and therefore also modulo $\text{rad}_R(\mathfrak{m}^s)$. The set $\{\mathfrak{m}^s R : g \in G\}$ is finite since $R/\mathfrak{m}R$ is finite and R is finitely generated. Let

$$\mathfrak{a} = \bigcap_{g \in G} \text{rad}_R(\mathfrak{m}^s) = \text{rad}_R \left(\bigcap_{g \in G} \mathfrak{m}^s R \right).$$

Then R/\mathfrak{a} is a finite semisimple ring and each $\text{rad}_R(\mathfrak{m}^s)/\mathfrak{a}$ is a direct sum of simple components of R/\mathfrak{a} . Therefore a is a unit modulo \mathfrak{a} .

Now $R = \bigoplus_{x \in X} SAx$ where X is any transversal of $(S \cap H)A$ to H . Also S is a direct sum of irreducible k -modules, so SA is a direct sum of cyclic J -modules, each isomorphic to a direct summand of J and one being J itself. If $J = Je \oplus Jf$ where $1 = e + f$ then

$$\bigcap_{g \in G} (\mathfrak{m}^s e) = \left(\bigcap_{g \in G} \mathfrak{m}^s \right) e$$

and therefore

$$\bigcap \mathfrak{m}^s R = (\bigcap \mathfrak{m}^s) R \subseteq (\mathfrak{a} \cap J) R \subseteq (\mathfrak{a} \cap \text{rg}\{H^m\}) R \subseteq \mathfrak{a}.$$

Consequently

$$\mathfrak{a} = \text{rad}_R(\mathfrak{a} \cap \text{rg}\{H^m\}).$$

Finally $R = J \oplus K$ as J -module for some K and so $\mathfrak{m}R \subseteq \mathfrak{m} \oplus K \neq R$. The proof is complete.

For brevity, call a group G *polyplintic* if G has a series $\langle 1 \rangle = G_0 \subseteq G_1 \subseteq \dots \subseteq G_n = G$ of finite length of normal subgroups such that each factor G_i/G_{i-1} is a plinth for G . Note that every subgroup of a polyplintic group of finite index is polyplintic and that every polycyclic-by-finite group has a polyplintic normal subgroup of finite index.

(5) *Let $R = S[G]$ be a ring, where S is a finite semisimple subring of R , G a subgroup of the units of R normalizing S , $S \cap G$ a subgroup of G and R a crossed product of S and the polyplintic group $G/(S \cap G)$. Let P be a normal subgroup of G of finite index and let $a = \sum_{t \in T} ta_t \in R \setminus \{0\}$ where T is a transversal of $S \cap G$ to G and the a_t are zero or units of S . Then there exists an ideal $\mathfrak{a} \neq R$ of R of finite index such that a is a unit modulo \mathfrak{a} and $\mathfrak{a} = \text{rad}_R(\mathfrak{a} \cap \text{rg}\{P\})$.*

PROOF. We induct on the length of a plinth series for $G/(S \cap G)$. Let $H/(S \cap G)$ be a normal subgroup of $G/(S \cap G)$ such that $H/(S \cap G)$ is a non-trivial plinth for G and G/H is polyplintic. If X is a transversal of H to G then $R = \bigoplus_{x \in X} xS[H]$. Let $a = \sum x b_x$ where each $b_x \in S[H]$. By (1) each non-zero b_x is a non-zero-divisor of $S[H]$. Consequently so is $b = \prod_{b_x \neq 0} b_x$ (multiplied in any fixed order). Let $m = (H : H \cap P)$. Then by (4) there is a G -invariant ideal $\mathfrak{b} \subset S[H]$ of finite index such that b is a unit modulo \mathfrak{b} and $\mathfrak{b} = \text{rad}_{S[H]}(\mathfrak{b} \cap \text{rg}\{H \cap P\})$. By an elementary property of finite semisimple rings each non-zero b_x is also a unit modulo \mathfrak{b} .

Now $\mathfrak{b}R = R\mathfrak{b} = \bigoplus_{x \in X} x\mathfrak{b}$ since \mathfrak{b} is G -invariant. By induction applied to $R/\mathfrak{b}R$ there exists an ideal $\mathfrak{a} \supseteq \mathfrak{b}$ of R of finite index with $\mathfrak{a} \neq R$ such that a is a unit modulo \mathfrak{a} and

$$\mathfrak{a}/\mathfrak{b}R = \text{rad}_{R/\mathfrak{b}R}(\mathfrak{a}/\mathfrak{b}R \cap \text{rg}\{P \text{ modulo } \mathfrak{b}R\}).$$

Then

$$\begin{aligned} \mathfrak{a} &= \text{rad}_R(\mathfrak{a} \cap (\text{rg}\{P\} + \mathfrak{b}R)) \\ &= \text{rad}_R((\mathfrak{a} \cap \text{rg}\{P\}) + \mathfrak{b}R) \\ &= \text{rad}_R((\mathfrak{a} \cap \text{rg}\{P\}) + \text{rad}_{S[H]}(\mathfrak{b} \cap \text{rg}\{H \cap P\})) \\ &= \text{rad}_R(\mathfrak{a} \cap \text{rg}\{P\}) \end{aligned}$$

since if \mathfrak{c} is a G -invariant ideal of $S[H]$ of finite index then $(\text{rad}_{S[H]})^s \subseteq \mathfrak{c}$ for some integer s and so

$$((\text{rad}_{S[H]})^s)G \subseteq \mathfrak{c}G \quad \text{and} \quad \text{rad}_{S[H]} \subseteq \text{rad}_R \mathfrak{c}.$$

(6) Let $R = Z[G]$ be a domain, where Z is a central subring of R , G a subgroup of the units of R , $Z \cap G$ a subgroup of G generating Z as a ring and R a crossed product of Z and the polyplactic group $G/(Z \cap G)$. For each prime p let G_p be a normal subgroup of G of finite index containing $Z \cap G$. Let $a \in R \setminus \{0\}$.

(a) If $\text{char } R = 0$ there is a cofinite set π of rational primes such that for each $p \in \pi$ there exists an ideal $\mathfrak{a} \neq R$ of R of finite index such that a is a unit modulo \mathfrak{a} and $p \in \mathfrak{a} = \text{rad}_R(\mathfrak{a} \cap \text{rg}\{G_p\})$.

(b) If $\text{char } R = p > 0$ there exists an ideal $\mathfrak{a} \neq R$ of R of finite index such that a is a unit modulo \mathfrak{a} and $\mathfrak{a} = \text{rad}_R(\mathfrak{a} \cap \text{rg}\{G_p\})$.

PROOF. Let T be a transversal of $Z \cap G$ to G and let $a = \sum_T t a_i$ where each $a_i \in Z$. Let $b = \prod_{a_i \neq 0} a_i$. Now Z is a finitely generated integral domain and hence so is $Z[b^{-1}]$. If \mathfrak{n} is a maximal ideal of $Z[b^{-1}]$ then \mathfrak{n} has finite index and $Z \cap \mathfrak{n}$ is a maximal ideal of Z . If $\text{char } R = 0$, set

$$\pi = \{\text{char}(Z[b^{-1}]/\mathfrak{n}) : \mathfrak{n} \text{ as above}\}.$$

Then π is cofinite.

If $\text{char } R = 0$ let $p \in \pi$. Otherwise set $p = \text{char } R$. The above shows that there is a maximal ideal \mathfrak{m} of Z , necessarily of finite index, with $p \in \mathfrak{m}$ and $b \notin \mathfrak{m}$. It follows that each non-zero a_i is a unit modulo \mathfrak{m} . Also $R/\mathfrak{m}R \cong \bigoplus_{t \in T} t(Z/\mathfrak{m})$ and $\mathfrak{m}R$ is an ideal of R since \mathfrak{m} is central. By (5) there is an ideal $\mathfrak{a} \neq R$ of R containing $\mathfrak{m}R$ such that a is a unit modulo \mathfrak{a} and

$$\begin{aligned}
\mathfrak{a} &= \text{rad}_R(\mathfrak{a} \cap (\text{rg}\{G_p\} + \mathfrak{m}R)) \\
&= \text{rad}_R((\mathfrak{a} \cap \text{rg}\{G_p\}) + \mathfrak{m}) \\
&= \text{rad}_R(\mathfrak{a} \cap \text{rg}\{G_p\})
\end{aligned}$$

since $Z = \text{rg}\{Z \cap G\} \subseteq \text{rg}\{G_p\}$.

An ideal \mathfrak{a} of a ring R is right weak A-R if for any submodule N of a finitely generated right R -module M there exists an integer m with $N \cap M\mathfrak{a}^m \subseteq N\mathfrak{a}$. There is a similar notion of left weak A-R and weak A-R means left and right weak A-R.

(7) *Let G be a polycyclic group, J a commutative Noetherian ring and \mathfrak{a} an ideal of the group ring $R = JG$ of finite index. Suppose that G is p -nilpotent for every prime p dividing the characteristic of R/\mathfrak{a} . Then \mathfrak{a} is weak A-R.*

PROOF. Since R is Noetherian, it suffices to consider a finitely generated (say right) R -module M and an essential submodule N of M killed by \mathfrak{a} and to prove that some power of \mathfrak{a} kills M (see [1] 11.2).

N is a finitely generated module over the finite ring R/\mathfrak{a} , so N is finite. By [4] theorem 3 (or alternatively [10]) the split extension $G[M]$ is residually finite. Thus there is a submodule K of M of finite index with $K \cap N = \{0\}$. Since N is essential, $K = \{0\}$ and M is finite.

Let $\mathfrak{b} = J \cap \mathfrak{a}$. By the Artin-Rees Lemma (e.g. [7] 11C) there exists an integer $l \geq 1$ with $N \cap M\mathfrak{b}^l \subseteq N\mathfrak{b} = \{0\}$. Since \mathfrak{b} is central $M\mathfrak{b}^l$ is an R -submodule of M and N is essential. Therefore $M\mathfrak{b}^l = \{0\}$. We now induct on the composition length of M as J -module.

There exists a maximal ideal \mathfrak{m} of J containing \mathfrak{b} with $M\mathfrak{m} < M$. Clearly $N \cap M\mathfrak{m}$ is essential in $M\mathfrak{m}$ (even if $M\mathfrak{m} = \{0\}$) so by induction $M\mathfrak{m}\mathfrak{a}^r = \{0\}$ for some positive integer r . Then $M\mathfrak{a}^r\mathfrak{m} = \{0\}$ and so $M\mathfrak{a}^r$ is a finitely generated $(J/\mathfrak{m})G$ -module. Also $J \cap \mathfrak{a} \subseteq \mathfrak{m}$, so G is p -nilpotent for $p = \text{char } J/\mathfrak{m}$. By the theorem of [12] every ideal of $(J/\mathfrak{m})G$ is weak A-R so there exists a positive integer s with $N \cap M\mathfrak{a}^r \cap M\mathfrak{a}^{r+s} \subseteq N\mathfrak{a} = \{0\}$. Therefore $M\mathfrak{a}^{r+s} = \{0\}$.

(8) *Let $R = S[G]$ be a ring where S is a subring of R and G is a subgroup of the units of R normalizing S . Suppose P is a normal subgroup of G of finite index with $P \subseteq S$ and let \mathfrak{a} be a G -invariant right (resp. left) weak A-R ideal of S such that S/\mathfrak{a} is right (left) Noetherian. Then $\mathfrak{b} = \text{rad}_R \mathfrak{a}$ is a right (left) weak A-R ideal of R .*

PROOF. We prove the right version. Now $\mathfrak{a}R = \sum_{g \in G} \mathfrak{a}g$ is an ideal of R and

$\mathfrak{b}/\mathfrak{a}R$ is the radical of $R/\mathfrak{a}R$. Also R is finitely generated as right S -module and therefore $R/\mathfrak{a}R$ is right S -Noetherian and consequently right Noetherian. Thus some power of \mathfrak{b} , say \mathfrak{b}' , lies in $\mathfrak{a}R$ ([3] p. 196, theorem 1 and [1] 1.8).

Let M be a finitely generated right R -module and N a submodule of M . Then M is also finitely S -generated so for some positive integer s we have $N \cap Ma^s \subseteq Na$. Then

$$N \cap M\mathfrak{b}^s \subseteq N \cap M(\mathfrak{a}R)^s = N \cap Ma^s \subseteq Na \subseteq N\mathfrak{b}$$

since $(\mathfrak{a}R)^s = (\mathfrak{a}G)^s = G\mathfrak{a}^s$ as \mathfrak{a} is G -invariant. The result follows.

(9) REMARK. It is easy to deduce from (7) and (8) that if G is a polycyclic-by-finite group, J a commutative Noetherian ring and \mathfrak{a} an ideal of JG of finite index, then there exists a weak A-R ideal \mathfrak{b} of JG of finite index with $J \cap \mathfrak{a} \subseteq \mathfrak{b} \subseteq \mathfrak{a}$. This is a weak version of [4] theorem 6.

If \mathfrak{a} is an ideal of a ring R let $\mathcal{C}_R(\mathfrak{a})$ denote the set of all elements of R that are not zero-divisors modulo \mathfrak{a} .

(10) Let R be a right Noetherian ring and \mathfrak{a} an ideal of R with R/\mathfrak{a} semisimple. Then:

- (a) $\mathcal{C}_R(\mathfrak{a}) \subseteq \mathcal{C}_R(\mathfrak{a}^i)$ for each $i \geq 1$.
- (b) $\mathcal{C}_R(\mathfrak{a})$ is a right Ore set modulo \mathfrak{a}^i for each $i \geq 1$.
- (c) If \mathfrak{a} is right weak A-R then $\mathcal{C}_R(\mathfrak{a})$ is a right Ore set in R .
- (d) If \mathfrak{a} is right weak A-R and R is also left Noetherian and a domain then in the classical quotient ring RQ^{-1} for $Q = \mathcal{C}_R(\mathfrak{a})$ we have that $\bigcap_{i=1}^{\infty} (\mathfrak{a}Q^{-1})^i = \{0\}$.

PROOF. (a) We induct on i . We may assume that $\mathfrak{a}^{i+1} = \{0\}$. Suppose $xq = 0$ where $x \in R \setminus \{0\}$ and $q \in \mathcal{C}_R(\mathfrak{a})$. By induction $x \in \mathfrak{a}^i$. Now \mathfrak{a}^i is an R/\mathfrak{a} -module and R/\mathfrak{a} is semisimple. Thus \mathfrak{a}^i is a direct sum of irreducible R/\mathfrak{a} -modules and there exists an irreducible R/\mathfrak{a} -submodule V and an element $v \in V \setminus \{0\}$ with $vq = 0$. But V is isomorphic to a submodule of R/\mathfrak{a} , so q is a right zero-divisor on R/\mathfrak{a} . This contradiction shows that q is not a right zero-divisor of R . In the same way q is not a left zero-divisor either.

(b) Again, we may assume that $\mathfrak{a}^{i+1} = \{0\}$. By (a) we have $\mathcal{C}_R(\mathfrak{a}) \subseteq \mathcal{C}_R(0)$. But since \mathfrak{a} is now the radical of R we have $\mathcal{C}_R(0) \subseteq \mathcal{C}_R(\mathfrak{a})$ and Small's theorem yields that $\mathcal{C}_R(\mathfrak{a})$ is right Ore (see [1] 2.3).

(c) This follows at once from (b) and a lemma of P. F. Smith ([1] 11.9).

(d) Now $\mathfrak{a}Q^{-1}$ is an ideal of RQ^{-1} and therefore $(\mathfrak{a}Q^{-1})^i = \mathfrak{a}^iQ^{-1}$ for each

$i \geq 1$. Also, if $aq^{-1} = b \in R$ where $a \in \mathfrak{a}^i$ and $q \in Q$, then $bq \in \mathfrak{a}^i$ and (a) yields that $b \in \mathfrak{a}^i$. Consequently $R \cap \mathfrak{a}^i Q^{-1} = \mathfrak{a}^i$ for all $i \geq 1$. Thus

$$R \cap \bigcap_i (aQ^{-1})^i = \bigcap_i \mathfrak{a}^i = \{0\}$$

also by a result of Smith ([8] 11.2.13). Therefore

$$\bigcap_i (\mathfrak{a}Q^{-1})^i = \left(R \cap \bigcap_i (\mathfrak{a}Q^{-1})^i \right) Q^{-1} = \{0\}$$

as required.

(11) PROOF OF THEOREM 2. If $R \subseteq S$ are rings and \mathfrak{b} is an ideal of S of finite index containing the rational prime p and satisfying $\bigcap \mathfrak{b}^i = \{0\}$ then $\mathfrak{a} = R \cap \mathfrak{b}$ is an ideal of R of finite index containing p and satisfying $\bigcap \mathfrak{a}^i = \{0\}$. Also $\mathfrak{a}^{(n \times n)}$ is an ideal of the matrix ring $R^{(n \times n)}$ of finite index containing p and satisfying $\bigcap_i (\mathfrak{a}^{(n \times n)})^i = \{0\}$. There exists a finitely generated subring R_1 of D with $R \subseteq R_1^{(n \times n)}$. Thus we may assume that $n = 1$.

Since $F[G]$ is Noetherian, D is the classical quotient ring of $F[G]$ and so $R \subseteq J[G, a^{-1}]$ for some finitely generated subring J of F and some $a \in J[G] \setminus \{0\}$. Enlarge J so that J is still finitely generated, but is also generated by its group of units. Then J is generated by a finitely generated subgroup U of its group of units (actually the whole group of units is finitely generated by [13] théorème 1) and UG is polycyclic-by-finite. Thus replacing G by UG we may assume that J is an image of \mathbf{Z} .

Regard G as a subgroup of $\mathrm{GL}(m, \mathbf{Z})$ for some m (e.g. [16] 2.5, 2.3). Then G has a normal subgroup H of finite index with H connected such that H modulo its centre $\zeta_1(H)$ is polyplintic. Since H is connected $\zeta_1(H)$ is the FC -centre of H and H is orbitally sound in Roseblade's terminology (see [11] p. 383). Then by Theorem C1 or [11] we have that $J[H]$ is a crossed product of $Z = J[\zeta_1(H)]$ and $H/\zeta_1(H)$.

Let K denote the quotient field of J in D . Then $K(G)$ has finite dimension d say as left $K(H)$ -space and so $J[G, a^{-1}] \subseteq K(G)$ is isomorphic to a subring of $K(H)^{(d \times d)}$. Therefore $J[G, a^{-1}]$ is isomorphic to a subring of $J[H, b^{-1}]^{(d \times d)}$ for some $b \in J[H] \setminus \{0\}$ and we may assume that $H = G$.

For each prime p choose a p -nilpotent normal subgroup G_p of G of finite index containing $\zeta_1(G)$. By (6) there is a prime p and an ideal \mathfrak{a} of $J[G] = Z[G]$ of finite index with $p \in \mathfrak{a}$ such that a is a unit modulo \mathfrak{a} and $\mathfrak{a} = \mathrm{rad}_{J[G]}(\mathfrak{a} \cap J[G_p])$. By (7) the ideal $\mathfrak{a} \cap J[G_p]$ of $J[G_p]$ is weak A-R. Hence \mathfrak{a} is weak A-R by (8). Let $Q = \mathcal{C}_{J[G]}(\mathfrak{a})$. Then by (10) we have that Q is a right

divisor set in $J[G]$, $R \leq J[G, a^{-1}] \subseteq J[G]Q^{-1} = T$ say, and aQ^{-1} is an ideal of T of finite index with $p \in aQ^{-1}$ and $\bigcap_i (aQ^{-1})^i = \{0\}$. If $\text{char } D = 0$ then by (6) we can choose p to be any prime with at most a finite number of exceptions. In view of the opening remarks of this proof we have finished.

The following result may be proved similarly to (1) on page 22 of [16].

(12) *If \mathfrak{a} is an ideal of finite index in the finitely generated ring R then each R/\mathfrak{a}^i is also finite.*

(13) PROOF OF THEOREM 1. By Theorem 2 for a suitable prime p we can find an ideal \mathfrak{a} of R of finite index with $p \in \mathfrak{a}$ and $\bigcap_i \mathfrak{a}^i = \{0\}$, and by (12) each R/\mathfrak{a}^i is finite. Regard R as an $R - X$ bimodule via left and right multiplication and set $C_i = C_X(R/\mathfrak{a}^i)$. Then C_i is a normal subgroup of X of finite index, each C_i/C_{i+1} is a finite p -group and $\bigcap_i C_i = \langle 1 \rangle$, see [16] 4.6.

(14) EXAMPLES. We construct examples of *3-generator soluble subgroups of the multiplicative groups of division rings that are not residually finite*. Our first example is *nilpotent-of-class-two by cyclic*.

Let p be any prime. For each $i \in \mathbb{Z}$ let

$$H_i = \langle x_i, y_i : [x_i, y_i, x_i] = [x_i, y_i, y_i] = 1, [x_i, y_i]^p = 1 \rangle.$$

Let H be the central product of the H_i amalgamating the $[x_i, y_i]$, to z say. It is easy to check that the centre of H is $Z = \langle x_i^p, y_i^p, z : i \in \mathbb{Z} \rangle$. Let g be the automorphism of H defined by $x_i^g = x_{i+1}$, $y_i^g = y_{i+1}$ for each $i \in \mathbb{Z}$ and let G denote the split extension of H by $\langle g \rangle$. Clearly G is 3-generator and nilpotent-of-class-2 by cyclic. Suppose N is a normal subgroup of G of finite index not containing z . Now $\langle z \rangle = H'$, so $H \cap N \subseteq Z$. But H/Z is infinite, contradicting the finiteness of G/N . Consequently, G is not residually finite.

Let F be any field with a primitive p -th root ζ of unity and identify ζ and z . Let $F[H]$ be the corresponding crossed product of F and $H/\langle z \rangle$ with F central. $F[H]$ is locally Noetherian as H is nilpotent, and a domain by (1). By Goldie's theorem ([1] 1.27) $F[H]$ is an Ore domain; let E denote its classical quotient ring. The automorphism g of H determines an automorphism ϕ say of E . Let $D = E((t; \phi))$ be the division ring of formal power series over E in t satisfying $et = te^\phi$ for all e in E , see example 1, page 187 of [3]. Then G is isomorphic to the subgroup $\langle t, H \rangle$ of D^* .

Our second example has *derived length 3* like the previous example but is also *torsion-free*. The group we consider is a well-known example of P. Hall.

Let A be the direct product of copies A_i of the rationals, written multiplicatively. Let $i \mapsto p_i$ be a bijection from \mathbf{Z} to the set of *all* primes. Let x be the automorphism of A that permutes the A_i cyclically and let y be the automorphism of A that for each i raises the elements of A_i to their p_i -th powers. Then $B = \langle y^{(x)} \rangle$ is abelian and $H = \langle x, y \rangle$ is metabelian. The split extension $G = H[A]$ is torsion-free and soluble of derived length 3. Also A is irreducible as H -module, so G is not residually finite.

Let F be any field. The group ring FA is a domain (e.g. by (1)); let K be its quotient field. The action of H on A extends via linearity to an action of H on K . The corresponding skew group ring KB is a domain by (1), and locally Noetherian since B is abelian. Thus KB is an Ore domain; let E be its classical quotient ring. The automorphisms given by x on K and B extend to one ϕ of E . As in the previous example if D is the division ring $E((t; \phi))$ the subgroup $\langle t, AB \rangle$ of D^* is isomorphic to G .

REFERENCES

1. A. W. Chatters and C. R. Hajarnavis, *Rings with Chain Conditions*, Pitman, London, 1980.
2. G. Higman, *The units of group rings*, Proc. London Math. Soc. (2) **46** (1940), 231–248.
3. N. Jacobson, *Structure of Rings*, Am. Math. Soc., Providence, R.I., 1964.
4. A. V. Jategaonkar, *Integral group rings of polycyclic-by-finite groups*, J. Pure Appl. Algebra **4** (1974), 337–343.
5. A. I. Lichtman, *On normal subgroups of a multiplicative group of skew fields generated by a polycyclic-by-finite group*, J. Algebra **78** (1982), 548–577.
6. A. I. Lichtman, *On linear groups over a field of fractions of a polycyclic group ring*, Isr. J. Math. **42** (1982), 318–326.
7. H. Matsumura, *Commutative Algebra*, Benjamin, New York, 1970.
8. D. S. Passman, *The Algebraic Structure of Group Rings*, John Wiley & Sons, New York, 1977.
9. J. E. Roseblade, *Group rings of polycyclic groups*, J. Pure Appl. Algebra **3** (1973), 307–328.
10. J. E. Roseblade, *Applications of the Artin–Rees lemma to group rings*, Symp. Math. **17** (1976), 471–478.
11. J. E. Roseblade, *Prime ideals in group rings of polycyclic groups*, Proc. London Math. Soc. (3) **36** (1978), 385–447.
12. J. E. Roseblade and P. F. Smith, *A note on the Artin–Rees property of certain polycyclic group algebras*, Bull. London Math. Soc. **11** (1979), 184–185.
13. P. Samuel, *A propos du théorème des unités*, Bull. Sci. Math. **90** (1966), 89–96.
14. D. Segal, *On Abelian-by-polycyclic groups*, J. London Math. Soc. (2) **11** (1975), 445–452.
15. B. A. F. Wehrfritz, *Remarks on centrality and cyclicity in linear groups*, J. Algebra **18** (1971), 229–236.
16. B. A. F. Wehrfritz, *Infinite Linear Groups*, Springer, Berlin, 1973.

DEPARTMENT OF PURE MATHEMATICS
 QUEEN MARY COLLEGE
 LONDON E1 4NS, ENGLAND